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Abstract

We report on the lift and drag forces on a stationary sphere sub-

jected to a wall-bounded oscillatory flow. We show how these forces

depend on two parameters, namely, the distance between the particle

and the bounding wall, and on the frequency of the oscillatory flow.

The forces were obtained from numerical solutions of the unsteady

incompressible Navier-Stokes equations.

For the range of parameters considered, a spectral analysis found

that the forces depended on a small number of degrees of freedom.

The drag force manifested little change in character as the parame-

ters varied. On the other hand, the lift force varied significantly: we

found that the lift force can have a positive as well as a negative time-

averaged value, with an intermediate range of external forcing periods

in which enhanced positive lift is possible. Furthermore, we deter-

mined that this force exhibits a viscous-dominated and a pressure-

dominated range of parameters.

Keywords: lift, drag, sphere, wall-bounded flow, oscillatory flow.
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1 Introduction

We study the lift and drag forces on a sphere that is held a fixed distance away

from an ideally smooth wall. The sphere is immersed in an incompressible

fluid that is subjected to time-periodic forcing. This study is a follow-up on

Fischer, Leaf & Restrepo (2002) (hereafter referred to as FLR02), in which

we explored the dependence of the lift and drag on the Reynolds number and

the nondimensional forcing period, referred to as the Keulegan-Carpenter

number. In that study the sphere was also held fixed in time and space;

however, it rested on the bounding wall. The methodology followed here is

the same as in FLR02: we use time-dependent three-dimensional simulations

of the Navier-Stokes equations to obtain the flow from which we can obtain

the lift and drag on the particle.

In FLR02, we reported that, for the range of parameters considered,

the lift and drag varied more dramatically with changes in the Keulegan-

Carpenter number rather than with changes in the Reynolds number. In

this study we focus on how these forces depend on the Keulegan-Carpenter

number and on the gap, which is the shortest distance between the surface

of the sphere and the wall, normalized to the diameter of the particle.

Numerous studies have examined oscillatory flows past stationary cylin-

ders (e.g., Bearman, Downie, Graham & Obasaju (1985); Sarpkaya (1986);

Obasaju, Bearman & Graham (1988); Justesen (1991)). Many of these

studies have been motivated primarily by the need to characterize forces

resulting from rhythmic flow around submerged pipes in oceanic settings.

Little, however, has appeared in print regarding forces on a spherical par-

ticle in an oscillating flow, particularly in proximity to a bounding wall.
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When one compares the experimental results of Rosenthal & Sleath (1986)

and FLR02, it becomes clear that the topological differences between two-

dimensional cylinder flow and three-dimensional flow past a sphere prevent

one from extrapolating the cylinder results to the spherical case.

Our flow configuration is characterized by the three independent flow

parameters: the Keulegan-Carpenter number, the Reynolds number, and the

gap. The resulting fluid motion due to an oscillating far-field velocity field is

unsteady, and thus steady-state or unidirectional analyses are not generally

applicable. Hence, the Keulegan-Carpenter number plays a more prominent

role in determining the nature of the flow than does the Reynolds number.

Indeed, this was borne out in FLR02: variations in the flow were significantly

more dramatic when the Keulegan-Carpenter number was varied, rather than

when the Reynolds number was varied, when the particle was resting on the

bounding wall. Our present calculations do not indicate that introducing a

gap changes this outcome much. Hence, all results presented here correspond

to a fixed Reynolds number of 100. The insensitivity of the lift and drag to

the Reynolds number is not totally unexpected: the Reynolds number is

defined in terms of the the maximum speed of the far-field (bulk) flow, the

diameter of the particle, and the fluid viscosity. This choice of Reynolds

number is more appropriate for a steady-flow situation; nevertheless, we use

it because FLR02 as well as this study were inspired by experimental work

due to Rosenthal & Sleath (1986) in which the Reynolds number was defined

as stated above. The gap parameter, on the other hand, is particularly

important because the proximity of a wall to an object subjected to steady

flows has a significant influence on the forces experienced by the particle

(see Hall (1988); Cherukat, McLaughlin & Graham (1994); Asmolov &

2



McLaughlin (1999), and references mentioned in these works). It would

be reasonable to expect important changes on the lift and drag forces on a

particle subjected to a flow in the vicinity of a wall when the gap width is

varied, especially if the boundary layers in the neighborhood of the wall and

the sphere are comparable to the gap width.

In Section 2 we describe the physical configuration of the particle and

the flow. We also briefly describe how this flow is computed numerically. In

Section 3 we present the numerical results of measurements of the drag force

and discuss its dependence on the gap and frequency parameters of the flow.

In Section 4 we discuss the results for the lift force. In Section 5 we consider

the dynamic implications of combined drag and lift forces. We also describe

the qualitative changes that occur in the flow field and how they relate to

changes on the lift and drag forces. A summary of the results appears in

Section 6.

2 Computational Model

Our computational model is based on the incompressible Navier-Stokes equa-

tions, given in nondimensional form by

∂u

∂t
+ u ·∇u = −∇p +

1

Re
∇2u, (1)

∇ · u = 0, (2)

where u = (u, v, w) is the nondimensional velocity and p is the pressure nor-

malized by the fluid density ρ. The equations are nondimensionalized by the

characteristic length-scale D, the particle diameter, and the convective time-

scale, D/U , where U is the amplitude of oscillation in the far-field velocity.
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The Reynolds number is Re := UD/ν, with ν the kinematic viscosity. The

results presented below have a fixed Reynolds number of Re = 100.

The discretization of (1) is based on the spectral element method in space

and a characteristics-based second-order accurate splitting in time (Maday,

Patera & Rønquist (1990)). Full details of the discretization can be found in

FLR02 and Fischer (1997). The computational domain is the parallelepiped

[−Lx, Lx] × [−Ly, 0] × [0, Lz]. Homogeneous Dirichlet conditions (u = 0)

are applied on the bounding wall, located at z=0, and on the surface of the

unit-diameter sphere centered at (x, y, z) = (0, 0, 1
2 + ε). Here, ε is the nondi-

mensional gap width, referenced to the diameter D of the sphere. Boundary

conditions on the y = −Ly and z = Lz planes are free-slip, no-penetration,

which correspond to reflection symmetry about the given plane. In order

to reduce computational cost, symmetry conditions are also employed about

the y = 0 plane. A full three-dimensional calculation carried out in FLR02

demonstrated the appropriateness of the bilateral symmetry assumption un-

der the current flow conditions. Table 1 lists the domain sizes and number

of elements, K, employed for each value of ε considered. All reported cases

are run with polynomial degree N = 5 in each element. For all cases, the

timestep size was ∆t=.05, in convective time units. Note that it is the con-

vective timescale that determines the stability and accuracy constraints on

∆t and not the period τ . The CPU time per simulation period thus scales

in direct proportion to τ .

Several mesh convergence studies with N=8 and N=10 confirmed mesh

independence. The appropriateness of the timestep and domain sizes were

also confirmed. For the particular case of ε = 1, τ = 10, the mean lift

for a simulation with N=10, K=9632, ∆t=.025, and domain dimensions
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Table 1: Gap size, domain dimensions, and number of elements.

ε Lx Ly Lz K

0.0156 27.5 5.5 7.8156 2836

0.125 27.5 5.5 7.925 2836

0.25 28.0 9.0 10.50 4116

0.50 28.0 9.0 10.75 4116

0.70 28.0 9.0 11.00 4116

1.00 28.0 9.0 11.75 4116

(Lx, Ly, Lz) = (38,16,15) was found to be within 0.4 % of the production

simulation run. The maximum difference in the lift coefficient was 0.9 %

over a given period.

The base flow conditions are such that, in the absence of the particle, the

nondimensionalized velocity field would be

ub =
(
sin(

2πt

τ
)− e−z/δ sin(

2πt

τ
− z/δ), 0, 0

)
, (3)

which corresponds to a unit-amplitude velocity field oscillating back and

forth in the x-direction with nondimensional period τ . For viscous flows,

this results in a time-periodic boundary layer with characteristic thickness

δ =
√

τ

πRe
.

In this study the period is in the range 10 ≤ τ ≤ 300, and thus the Stokes

layer range is 0.17 < δ < 0.98, which is comparable to the range of the gap,

0.0156 ≤ ε ≤ 1.0.

As in FLR02, we use u = 0 as an initial condition in all cases. The

base flow is established in one of two ways, depending on the period. For
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relatively short periods (τ ≤ 40), periodic boundary conditions are used

in the x-direction, and the flow is forced by a time-periodic mean pressure

gradient. Because (1) is linear in p, we can write the pressure as

p = p′(x, y, z, t) + p0(x, t), (4)

where

p0 :=
2πx

τ
cos

(
2πt

τ

)
(5)

supplies the desired time-dependent mean pressure gradient and p′ is the

computed perturbation pressure, which is spatially periodic. Note that drag-

coefficient computations must include the full pressure (4) and not just the

computed perturbation p′.

For longer periods, the base flow is established by specifying Dirichlet

conditions on either end of the domain. When the far-field base flow is in the

positive x direction, we set u(−Lx, y, z, t) = ub and use a homogeneous Neu-

mann condition at x = +Lx. When the far-field base flow is in the negative x

direction, we reverse these conditions. The Neumann condition corresponds

to the usual outflow (natural) boundary condition associated with the Stokes

subproblem that is solved in each step. Note that the required hydrostatic

forcing results directly from application of the boundary conditions and that

the auxiliary pressure p0 is not needed.

We tested the consistency of the results with regard to changing bound-

ary condition strategies. The maximum difference between the lift computed

with the periodic boundary conditions and the inflow/outflow boundary con-

ditions for τ = 40 and ε = 0.5 was 0.34 %.
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At each time step, we compute the lift and drag coefficients, given by

CL =
Fz

1
2AρU2

, (6)

CD =
Fx

1
2AρU2

, (7)

respectively, where Fx and Fz are components of the dimensional force on the

particle and A = πD2/4 is the cross-sectional area. We introduce additional

subscripts m, M , and A to indicate the respective minimum, maximum, and

average of (6) and (7) over a single cycle in the time-periodic flow state.

3 Drag Calculations

The numerical simulations result in time histories of drag and lift data for

each (τ, ε) pairing. A typical set of drag histories is shown in Figure 1 for

the case of ε = 0.5 and several values of τ . Figure 2 shows the constituent

viscous and pressure contributions to the drag for the same cases. Over the

range of parameters considered, the drag behavior is smooth and essentially

monochromatic, with a dominant frequency of f = 2π/τ . The pressure and

viscous contributions are slightly out of phase for small τ . The phase lag

becomes smaller as τ increases. These curves also show that only a few

oscillations are required to obtain a periodic state, starting from rest, with a

somewhat longer time frame for small τ . All of the summary data (minimum,

maximum, and average) are computed during the final period.

In Figure 3, we plot CDM (ε, τ), the peak drag coefficient, for each of the

gap values considered. As τ −→ 0, CDM exhibits a rapid increase and a

similar value for all of the gaps considered. For the larger periods, there is a

significant spread in the drag coefficient as a function of the gap, with larger
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Figure 1: Drag histories for ε = 0.5; (a) τ = 10, (b) τ = 40, (c) τ = 120, and

(d) τ = 260.
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Figure 2: Pressure and viscous contributions to the drag histories for ε = 0.5;

(a) τ = 10, (b) τ = 40, (c) τ = 120, and (d) τ = 260.
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gaps corresponding to increased CDM .
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Figure 3: CDM as a function of gap ε and period τ .

The drag behavior can be understood by considering its constituent pres-

sure and viscous components. The pressure drag consists of a term arising

from the mean pressure gradient that drives the flow, ∂p0

∂x , and a term as-

sociated with the computed perturbation pressure p′. From (4) and (5), we

see that the mean component scales as τ−1, and we may expect this term to

dominate the overall drag for sufficiently small periods. Because the mean

pressure varies linearly with x, its contribution to drag is simply the pressure

gradient times the volume of the particle. When normalized by 1
2ρU2, the

resulting contribution to CDM is

CDM,0
=

8π

3

1

τ
. (8)

While an inverse power-law trend is indicated by the data in Figure 3, the
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exponent is not self evident. In Figure 4 we plot the CDM for ε = .125,

along with its respective pressure and viscous contributions, CDM,p and CDM,ν .

(Note that CDM equals CDM,p + CDM,ν only when the pressure and viscous

forces are in phase.) The slope of CDM,p on this log-log scale indicates an

exponent of about −.63 at τ = 10, indicating that we are outside of the range

where (8) is dominating the overall pressure. An extension to (8) is obtained

by accounting for the flow-separation that results in additional pressure drag

(the p′ contribution). Supposing the flow is fully separated (i.e., CD′ ≈ 1),

CDp
≈ 1 +

8π

3

1

τ
, (9)

which is also plotted in Figure 4.

101 102

100

101

τ

Dr
ag

1+8 π/ (3 τ)
total
pressure
viscous

Figure 4: CDM , CDM,p , and CDM,ν for ε = 0.125. Also plotted are Equations

(8) and (9).

The magnitude of (9) is in reasonable agreement with CDM,p for the

smaller periods but is not correct for large τ , where (9)−→ 1, while CDM,p −→

0 as τ increases. This result is to be expected, because the physics in the

large-τ limit is quite different due to the interaction of the Stokes layer with
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the particle. Figure 4 reveals that CDM drops substantially below unity for

large τ . This drop is explained by the momentum deficit associated with

the Stokes layer near the wall, which is growing as τ 1/2. Particles within the

Stokes layer do not “see” the full velocity magnitude, U . One might there-

fore expect that particles further from the wall would exhibit larger values

of CDM in the large-τ limit. Conversely, for small τ and, hence, small δ, the

drag behavior should not be strongly dependent on ε. These behaviors are

indeed evident in Figure 3.

Regarding the viscous contribution to the drag, one can make arguments

similar to that for the pressure in the case of short periods. The peak value of

the viscous drag will scale as βAρνU/δ̃, where A is the cross-sectional area,

β an order-unity constant, and δ̃ a characteristic boundary layer thickness

on the particle surface. Standard dimensional arguments imply that the

boundary layer thickness scales as (ν t̃)1/2, where t̃ is a relevant viscous time

scale. For long periods (neglecting any interaction with the Stokes layer), t̃

is essentially the time of flight for a fluid particle to pass the sphere, which

is unity given our choice of nondimensionalization. For short periods, the

time scale will be t̃ ≈ τ/2, which is the length of time that the flow proceeds

in a given direction. Thus, in the small-τ limit, we expect the viscous drag

contribution to scale as τ−.5. In fact, we observe in Figure 4 CDM,ν ≈ O(τ−.4)

for τ = 10, which is in reasonable agreement with this analysis.

4 Lift Calculations

Figure 5 shows the lift histories for the ε = 0.5 case at values of τ correspond-

ing to the drag cases of Figure 1. Figure 6 shows the viscous and pressure
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contributions to the lift for the same cases. We see that the time history of

the lift does not exhibit the nearly simple harmonic behavior observed in the

drag histories. For the shortest period, τ = 10, the behavior is dominated

by a single frequency, which is twice the fundamental frequency due to the

fore-aft symmetry of the flow conditions. Nonetheless, the negative extrema

are more sharply peaked than the positive extrema, thus indicating the pres-

ence of higher harmonics. In Figure 6 the contrasting sharpness of the peaks

is clearly present in both the viscous and pressure lift contributions. For

τ = 40, a strong subharmonic at τ/4 is present in both the viscous and

pressure lift contributions. Finally, for τ = 260, we return to a strong funda-

mental signal with period τ/2. However, the viscous and pressure peaks are

out of phase, such that the total lift is essentially a flat signal with periodic

negative spikes. The negative extrema coincide with the change in sign of

the bulk velocity field given by (3).

Figure 7 shows the maximum, minimum, and average lift as a function of

ε and τ . By symmetry considerations, the lift is expected to go to zero as ε

gets large. The figures clearly show this trend. We examined the ε = 4 case

(not shown in this paper) to confirm this outcome. We found that the lift

becomes nearly simple-oscillatory with period τ/2 and that its magnitude,

for a fixed τ , is smaller than all other cases considered here, that is, tending

to zero. In addition, the lift is expected to go to zero as τ goes to infinity.

We return to this point in the subsequent discussion.

A salient feature of Figure 7 is the appearance of a regime of parameters

that exhibit significant positive time-averaged lift, CLA , which we refer to as

the transitional regime. The transitional range of parameter space ranges

from roughly τ = 30 to τ = 100. The figure shows an increase in the average
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Figure 5: Lift histories for ε = 0.5; (a) τ = 10, (b) τ = 40, (c) τ = 120, and

(d) τ = 260.

lift in the transitional regime, particularly for small-gap cases. Below that

transitional regime is one in which the average lift can be negative. That is,

for a given gap width, there are values of τ small enough for which there is

a net suction. On the other side of the transitional regime, CLA not change

considerably with τ and represents a lift force that, on average, is directed

away from the bounding wall. The ε = 0 case has the most pronounced

transitional region. Figure 7 shows that the maximum lift for ε = 0 is positive

for all τ > 10. In FLR02, however, we found that the maximum quickly tends
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Figure 6: Pressure and viscous contributions to the lift histories for ε = 0.5;

(a) τ = 10, (b) τ = 40, (c) τ = 120, and (d) τ = 260.

to zero for values of τ < 10. For the larger gap sizes investigated (i.e., for ε

close to unity), the average lift is small and negative at τ = 10.

Figure 8 shows the viscous and pressure components of the computed av-

erage lift as a function of ε and τ . These plots reveal viscous- and pressure-

dominated lift regimes which are separated by a cross-over point in ε-τ space.

For small gap widths, this crossover either does not occur or occurs for pe-

riods smaller than the ones examined in this study. In Figure 8a we see no

crossover. In the remaining figures we see a crossover between the viscous
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Figure 8: CLA (solid), average of the viscous component of the lift (dia-

monds), average of the pressure component of the lift (stars); as a function

of τ , for (a) ε = 0.250, (b) ε = 0.375, (c) ε = 0.425, (d) ε = 0.500, and (e)

ε = 0.750. Note scales.

and pressure components. Furthermore, the crossover point clearly tends to

larger values of τ as ε increases. Figure 9 shows the average lift regimes

borne out of the numerical simulations. The crossover points were obtained

numerically and were connected in the figure by straight lines. The average
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lift value at which crossover occurs becomes smaller in magnitude as both τ

and ε get larger.

As mentioned, for fixed ε, the lift is expected to go to zero as τ goes

to infinity. This would be the limit of Stokes flow.1 Our computational

configuration does not allow us to explore this limit, but the tendency is

certainly present. It may be somewhat puzzling to consider the Stokes flow

limit if we are holding the Reynolds number fixed at 100 in our exploration

of parameter space. The apparent contradiction is resolved by realizing the

Reynolds number used here, based on the external flow, becomes less relevant

in the regime of very large τ : as τ goes to infinity the Stokes layer thickness

gets larger (at a rate proportional to τ 1/2); the Stokes layer becomes infinitely

large, when compared to D, and the impinging velocity shear goes to zero.

1Not to be confused with Stokes boundary layer solution to oscillatory bounded flows.
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To gain further insight to the nature of the lift force in the large-τ limit,

we conducted a separate set of steady-state calculations. We considered

the lift conditions in the large τ limit for the particular case ε = 0.5. As

τ −→ ∞, we can expect the flow conditions to be quasi steady-state and

δ ) 1. Under these conditions, the background velocity profile near the wall

is u ≈ (0, 0, cz). Here, c is found by differentiating (3),

c =
∂ub

∂z

∣∣∣∣∣
z=0

=
1

δ
(sin(2πt/τ) + cos(2πt/τ)) ,

which takes as its maximum (over time)

cmax =

√
2

δ
=

√
2πRe

τ
.

For ε = 0.5, the center of the sphere is located at z = 1 and the velocity

at the sphere center is thus U∗ := c. The steady-state calculations used the

same computational domain as considered in the oscillatory case but with

boundary conditions such that the base flow corresponds to plane Couette

10−4 10−3 10−2 10−1 100 101
0.5

1

1.5

2

2.5

3

3.5

4

 Re*    

 C
L*   

Figure 10: Lift for a sphere in a plane Couette flow, ε = 0.5, for a Re∗ =

DU∗/ν in the range of Re∗ = 10−4–101.
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flow with u ≈ (0, 0, z) (i.e., the flow is normalized by the base-flow velocity

U∗). We considered a series of trial runs with finite Reynolds numbers,

Re∗ := DU∗/ν in the range of Re∗ = 10−4–101. The computed lift coefficients

are shown in Figure 10 and clearly show a trend toward an order unity

constant. From the data,

C∗
L :=

L∗

1
2ρ(U∗)2

≈ 3.6.

The dimensional relationship between C∗
L and CL is

CL =
(

U∗

U

)2

C∗
L =

2πRe

τ
C∗

L,

from which we conclude that

CLM
∼ 3.6

2πRe

τ

as τ −→ ∞, for ε = 0.5. For other values of ε we would expect a similar

trend with a different order unity constant. Note that, for this limit to

apply, we must have δ > 1 + ε (the normalized sphere height), which implies

τ ) πRe(1 + ε)2.

Figure 11 shows the spectral content of CL(t; τ ; ε), corresponding to the

cases considered in Figure 5. The most prominent feature of these plots is

the relatively few degrees of freedom present in the lift signal, which suggests

that a simple and practical parametrization of the lift might be possible.

Regardless of the forcing period, the spectra will always contain the half-

period signal (the lift goes through two cycles per forced oscillation). For

short-period forcing, the spectra indicate that nearly all of the energy in the

lift is captured by the τ/2-period degree of freedom. As τ increases, a cascade

of subharmonics appears. The overall energy of the signal also decreases (i.e.
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Figure 11: Spectrum of CL(t; τ, ε) for ε = 0.500; (a) τ = 10, (b) τ = 40, (c)

τ = 120, and (d) τ = 260. Amplitude scaled to CL.

the lift decreases). For larger values of τ , the spectrum becomes more regular;

that is, the cascade contains commensurate subharmonics. An example of

this is shown in Figures 11c and d. Furthermore, as the gap is increased, the

spectrum becomes more regular, and the energy in the subperiods decreases

significantly. Examination of all the spectra, particularly for large τ , did not

yield a power law relationship in the spectrum. For midvalues of the period,

say between τ = 30 and τ = 100, the spectra is more complex: not only are

subharmonics present and large, but other degrees of freedom can be seen in

the spectra. In fact the half-period component seen in Figure 11b is smaller
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Figure 12: Phase relationship between the pressure and viscous components

of the average lift CLA , for ε = 0.5; (a) τ = 10, (b) τ = 40, (c) τ = 120,

and (d) τ = 260. Shown here is the superposition of 6.5 periods of data,

including the initial transient data.

than other spectral components for the τ = 40 case.

Figure 6 shows that the phase between the viscous and the pressure com-

ponents of the lift is not constant across all τ . For small values of τ the

two components are largely in phase, and the two components play nearly

equally important roles in determining the lift. In the transitional region,

however, the two components exhibit complex phase relationships and com-

parable magnitudes. For longer periods the magnitude of both components
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falls dramatically, the pressure component dominates, and the phase is still

fairly complex. This situation is illustrated in Figure 12, where the points

represent values of the components of the lift/drag at different times. The

trajectory direction is clockwise for advancing time, except for Figure 12b,

which incidentally, corresponds to a case in the transitional range. Figure

12a corresponds to ε = 0.5 and τ = 10. For the same gap and τ = 40,

Figure 12b shows that the trajectory is a distorted “figure 8.” The rightmost

portion of the 8 is progressing clockwise. With larger τ , the figure 8 settles

to a shape similar to that shown in Figure 12c, the τ = 260 case. Of note is

how quickly the pressure component of the lift grows and drops in all cases.

In these figures a few spurious points correspond to the early times of the

simulation, when transients are present.

5 Combined Lift and Drag

We examine next the combined action of the lift and drag forces and relate

certain features of these forces to qualitative changes in the vorticity field.

To do so, we have computed force phase diagrams. In contrast to Figure 12,

however, these phase diagrams plot the history of the lift against the drag.

The phase diagrams are plotted as histories, time being quoted in fractions

of the period. In addition, we display the velocity and the magnitude of

the vorticity at the associated stages during the cycle. Since the forces are

periodic, we display the magnitude of the vorticity only for times after one

half-period has transpired.

For ε = 0.5 and τ = 40, we see in Figure 13 that the maximum lift is

attained when the far field velocity magnitude is near zero. The ascent in
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Figure 13: Vorticity magnitude, velocity profiles, and phase portrait at t/τ=

.375, .500, .625, .750, .875, and .975 for ε = 0.5, τ = 40.

phase space, from the second smallest value of the lift to the largest, occurs

very quickly. As the velocity magnitude increases the drag increases further,

the lift quickly reaches its minimal value and is then driven slowly to the

maximum drag point. Later, as the asymmetry in the vorticity increases,

both the drag and the lift decrease. The climb to the maximum value of

the lift, following the second smallest value of the lift, is characterized by a

considerable amount of vorticity in the neighborhood of the bounding wall.

In Figure 14 we see that the magnitude of the lift in the ε = 1 τ = 40

case is smaller than in the ε = 0.5 τ = 40 case. We also see that the lift

is small in comparison to the drag. In this instance, the lift has only one
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Figure 14: Vorticity magnitude, velocity profiles, and phase portrait at t/τ=

.375, .500, .625, .750, .875, and .975 for ε = 1.0, τ = 40.

25



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

DRAG

LIF
T

Time =0.51667        τ=120    ε=50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

DRAG

LIF
T

Time =0.61667        τ=120    ε=50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

DRAG

LIF
T

Time =0.71667        τ=120    ε=50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

DRAG

LIF
T

Time =0.81667        τ=120    ε=50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

DRAG

LIF
T

Time =0.91667        τ=120    ε=50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

DRAG

LIF
T

Time =1.0167        τ=120    ε=50

Figure 15: Vorticity magnitude, velocity profiles, and phase portrait at t/τ=

.500, .600, .700, .800, .900, and 1.000 for ε = 0.5, τ = 120.

minimum and one maximum. The lift maximum coincides with an increase

in the asymmetry in the vorticity distribution. This case, as well as that of

Figure 13, belongs to the viscous-dominated average-lift regime.

Figure 15 shows the phase portrait and velocity/vorticity distributions

for the ε = 0.5 and τ = 120 case. In contrast to the preceding cases, it

corresponds to a pressure-dominated-regime case. Of note is the appearance

of two maxima in the lift and one minimum. We observe, as well, that

the time progression of the changes in the lift and drag as a function of time

occur more smoothly than in the τ = 40 case. We also note that the lift/drag

magnitude ratio of this case is similar to the ε = 1.0, τ = 40 case. The main
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characteristic that makes this case different from the viscous-dominated cases

is the proportion of time the lift is of one sign (in this case positive).

We can relate the spectral analysis of the lift, some of which appears in

Figure 11, to the phase plots. Doing so, we reach the following general con-

clusions: over a full period of the forcing, the two largest maxima and minima

in the lift are correlated in time with the largest spectral components. The

smaller features are correlated to the smaller amplitude spectral components

as well. Since the phase portraits are periodic, with period equal to half

the forcing period, the periods of the spectral components smaller than the

dominant one must be additively commensurate in smaller groups, usually

two. In the transition regime, where the largest spectral component is not

the half-period of the forcing, the largest extremum is associated with the

largest component of the spectrum, the half-period component with the next

largest component. Qualitatively, for moderate ε and the larger-τ range, the

lift is characterized by a smaller but more sustained positive lift. For the

same ε, and τ in the transitional range, the lift is characterized by more

peaked and shorter-lived bursts. One may speculate that this difference in

behavior, when comparing the transitional and the larger-τ regimes, may be

associated in an idealized fluid flow as follows: supposing that the buoyancy

and lift forces on a particle are comparable in this idealized flow, the transi-

tional regime would be more effective in dislodgement and the longer period

regime more effective in keeping a particle in suspension.

27



6 Summary

In Fischer et al (2002) we numerically computed the lift and drag on a sta-

tionary sphere in the neighborhood of an ideal wall boundary, subjected to a

time-periodic fluid flow. The lift and drag were obtained as a function of the

period of external forcing and Reynolds number. Here we explored how the

lift and drag forces change as the gap as well as the forcing period parameters

are varied.

The drag force is found to be very uniform in character, for a wide range of

period and gap values. The drag is the prevalent force, when compared to the

lift, if consideration is limited solely to their relative magnitude; nevertheless

the complex phase relationship between the lift and drag suggests that in

some contexts ignoring one of the components of the total force would yield

a poor description of the dynamics of a particle, unless, perhaps, when the

buoyancy force is overwhelming.

We found that there are clearly identifiable regimes in which the average

lift is primarily described as viscous- or pressure-dominated. We find that

the lift has a range in (ε, τ) parameter space in which enhancement takes

place and that the lift force is qualitatively different when the gap is present,

as compared to the situation where the gap is not there.

This study raises several questions, the most important being the follow-

ing: Why is there a parameter regime of enhanced averaged lift? What is the

underlying reason for there being a pressure and viscous dominated regime

in the lift?

This study also concludes that one should be able to build a robust and

widely applicable model for the combined lift and drag forces on particles sub-
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jected to oscillatory flows. To this end this paper provides a fairly complete

description of the forces that should be of considerable aid in formulating

such a model.

Several authors, among them Rubinov & Keller (1961); Honji & Taneda

(1969); Kurose & Komori (1999), and Kim & Choi (2002), have found

that the estimate on the lift forces of spheres and cylinders in steady flows

can be significantly affected by ignoring torque. In a future study we intend

to take up this question in the context of oscillatory flows using similar

methods to those used in this work. Later, we will also characterize the

lift and drag forces on a freely moving particle and determine if there is a

preferential combination of parameters that lead to sustained suspension or

particle dislodgement.

The computed data for lift and drag as a function of time, for periods

10 ≤ τ ≤ 300 and gaps 0 ≤ ε ≤ 1, is available and may be obtained by

contacting the authors.
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